Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe.
نویسندگان
چکیده
A bifunctional fluorescent oligonucleotide probe for small molecules and protein detection has been developed based on turn on fluorescence response via the target induced structure-switching of molecular beacon. The two loops of this molecular beacon are designed in such a manner that they consist of thrombin (Tmb) aptamer sequence and adenosine triphosphate (ATP) aptamer sequence, respectively, which are utilized to sense thrombin and ATP. The oligonucleotide forms double stem-loops in the absence of targets, yielding no fluorescence emission because of the FRET from the excited fluorophore to the proximal quencher. Upon addition of the target, the ATP or Tmb, its specific interaction with loop sequence of the hairpin structure induce the separation of reporter fluorophore and the fluorescence quencher of the molecular beacon, resulting in an increase of fluorescence response. Hence, the separate analysis of ATP and Tmb could be realized through only one designed molecular beacon. The detection limits were estimated to be 25 nM for ATP and 12 nM for Tmb, respectively. The results of this study should substantially broaden the perspective for future development of oligonucleotide probe for analysis of other analytes.
منابع مشابه
An amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions
Nowadays metal-organic frameworks with multiple luminescent centers are very fascinating as multifunctional luminescent material because of their luminescence properties, which could be systematically tuned by deliberate use of organic ligands and metal ions. In this research, we explored a microporous mixed-ligand MOF for highly selective and sensitive detection of metal ions. A two-fold inter...
متن کاملDesign of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid
Background: Gallic acid (GA) is one of the polyphenolic compounds with antioxidant, antimicrobial and radical scavenging activities, which plays a main role in human health against cancer and cardiovascular diseases. GA concentration can be quantitatively measured in food, medicinal plants and body fluids. Materials and Methods: In this study, MnO2 nanosheets were prepared by reducing potassium...
متن کاملElectrocatalytic assay of mercury(II) ions using a bifunctional oligonucleotide signal probe.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg(2+) based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg(2...
متن کاملTime-resolved fluorescence aptamer-based sandwich assay for thrombin detection.
In the present study, the authors report a novel sensitive method for the detection of thrombin using time-resolved fluorescence sensing platform based on two different thrombin aptamers. The thrombin 15-mer aptamer as a capture probe was covalently attached to the surface of glass slide, and the thrombin 29-mer aptamer was fluorescently labeled as a detection probe. A bifunctional europium com...
متن کاملA turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide.
A simple, sensitive and selective turn-on fluorescent aptasensor for adenosine detection was developed based on target-induced split aptamer fragment conjunction and different interactions of graphene oxide and the two states of the designed aptamer sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 41 شماره
صفحات -
تاریخ انتشار 2013